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Abstract

Hot-wire measurements of velocity and temperature ¯uctuations have been made in the self-preserving turbulent wake region of

a heated cylinder. Second order statistics including Reynolds ¯uxes, uih, are determined along with relevant triple correlations ap-

pearing in the Reynolds stress and Reynolds ¯ux transport equations. The primary aim with these measurements is to study di�erent

modelling levels for passive scalar quantities. Models for the pressure scalar-gradient correlation, appearing in the transport equa-

tion of the Reynolds ¯uxes, are compared to measured data. A signi®cant improvement of the simplest model, ÿc1T �1=s�uih, is

achieved by including a model for the rapid term that is linear in the mean velocity gradients. The mixed timescale,

���������������
kh2=eeh

q
, seems

to be an appropriate choice for s. Also models for the triple correlations, uiujh, are compared with the experiments. Ó 1998

Elsevier Science Inc. All rights reserved.

1. Introduction

Turbulent transport of passive scalars plays an important
part in many engineering applications and atmospheric ¯ows.
The passive scalar may for example be temperature, humidity,
pollutant or any other chemical species. The transport equa-
tion of the mean scalar is given by
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Here an unknown ¯ux term, uih, appears. In analogy with the
eddy-viscosity concept this may be obtained by a simple gradi-
ent di�usion model,

uih � ÿ mt
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In a zero equation model an assumption of a constant turbu-
lent Prandtl or Schmidt number is made. For many engineer-
ing applications this is not enough accurate. If the turbulent
Prandtl or Schmidt number is not assumed to be constant,

the transport equation of the scalar variance, h2, and the scalar
dissipation rate, eh, are needed to be solved for, in analogy with
k±e modelling. The simple eddy-di�usivity approach is unable
to give a correct prediction of all components of uih in many
¯ows. In the two-dimensional heated cylinder wake, for
example, a zero prediction of the streamwise heat ¯ux is
obtained, whereas inclusion of a nonlinear term improves the
situation considerably (WikstroÈm et al., 1996). To involve
more of the physics of heat ¯ux transport, in the two-equation
model approach, algebraic scalar-¯ux models which are ob-
tained from the transport equations of the scalar ¯uxes may

be used. The formulation of these involves the use of some
equilibrium assumption equivalent to that used in algebraic
Reynolds stress models. The basic platform here consists of
transport equations of h2 and eh. Explicit forms of these alge-

braic models are attractive since they lead to decreased numer-
ical problems and computational e�orts as compared to full
second-order modelling. A second-order Reynolds ¯ux model
gives, in conjunction with a second-order Reynolds stress mod-
el, a turbulence closure consisting of twelve transport equa-
tions if the ¯ow is three-dimensional.

The transport equation for the scalar ¯uxes, uih, is given by
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The right-hand side of the transport equation contains two
production terms, a transport term consisting of one turbulent
and two molecular di�usion terms, a pressure-transport term,
a pressure scalar-gradient correlation term and di�usive and
viscous destruction. The sum of these three last terms is here
denoted by Wi. At high Reynolds numbers the molecular di�u-
sion terms are small compared to the turbulent ones and may
be neglected. Also the viscous and di�usive destruction terms
should then be negligible, since the small scales are nearly iso-
tropic at high Reynolds numbers. By modelling the turbulent
di�usion, ÿ�o=oxl��uiulh�, and Wi a modelled di�erential Rey-
nolds-¯ux equation is obtained. Through approximation of the
modelled transport equation we may obtain an algebraic sca-
lar-¯ux model, in which the model for Wi would be one of
the ingredients.
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When modelling the transport equation for the turbulent
scalar ¯uxes, a model for the pressure scalar-gradient correla-
tion term is needed. This term may be divided into a slow part
and a rapid part, where the slow part modelled by
ÿc1T �1=s�uih, may also include e�ects of destruction (Shih,
1996). Two major questions now arise. What is the appropriate
timescale, s, and when are the rapid terms important? Launder
(1978) suggested that both the thermal and the dynamical
timescales are important. Since they are generally not propor-
tional, i.e. Prt is not constant, a mixture of these should then be
used to blend both thermal and mechanical contributions. An
objection to this approach could be that inclusion of the ther-
mal timescale results in a violation of the superposition princi-
ple for passive scalars. On the other hand, the analog violation
is made in nonlinear models of the pressure±strain rate. In a
DNS of homogeneous shear ¯ow by Rogers et al. (1989), it
was found that the sum of the pressure scalar-gradient and
the destruction terms, in the turbulent scalar ¯ux transport
equation, are approximately aligned with the ¯ux vector itself.
However, such an alignment does not exclude the possibility to
substantially improve the predictions by including rapid terms
when modelling these terms. E�ects of the rapid terms in the
¯ow ®eld downstream a heated cylinder are investigated in
the present paper.

2. Experimental procedure

The MTL wind tunnel, at KTH, Stockholm, with a 7.0 m
long test section of 1:2� 0:8 m2 cross-section and a free stream
turbulence level less than 0.05% was used in the experiments.
The diameter of the wake-generating cylinder was 6.4 mm
and all the measurements were made at a velocity, U0, of
10.1 m/s giving a maximum mean velocity de®cit of 0.5 m/s
at x=d � 400. The present Reynolds number, U0d=m � 4300,
is about three times higher than that of Browne and Antonia
(1986). The cylinder was electrically heated giving a maximum
mean temperature excess, Hs, of 0:8�C above the ambient air
temperature at x=d � 400. Measurements were made at the fol-
lowing four di�erent downstream positions: x=d � 200, 400,
600 and 800. The streamwise variations of the maximum veloc-
ity defect, Us, the maximum temperature excess, Hs, and the
velocity defect half-width, l, are in good agreement with those
of Browne and Antonia (WikstroÈm et al., 1996). The results
presented below are obtained from data at x=d � 400, where
the turbulent Reynolds number, 4k2=me, is about 3200 at the lo-
cation of maximum production. Here k is the turbulent kinetic
energy and e is the dissipation rate of k.

Simultaneous measurements of velocity and temperature
statistics were made using a three-wire probe con®guration
consisting of an X-probe for velocity measurements and a sin-
gle cold wire for temperature detection, located 0.5 mm in
front of the X-wire mid point. The hot wires had a length of
0.5 mm and a diameter of 2.5 lm. The corresponding dimen-
sions for the cold wire were 1.0 mm and 0.63 lm. Voltages
from the constant temperature and constant current circuits
were ®ltered at 5 kHz and sampled at 10 kHz.

Cross-stream derivatives of measured quantities were ob-
tained by using cubic-spline smoothing. Derivatives in the
streamwise direction, needed to determine advective terms,
were obtained by assuming self-similarity. It was demonstrated
that this assumption was valid at x=d � 400.

3. Results

In Figs. 1 and 2 the dominating terms in the transport
equations for uh and vh are shown. Molecular di�usion as well

as terms involving streamwise derivatives may be neglected.
All terms are measured except Wi which is obtained by balanc-
ing Eq. (3). The two components of Wi are then given by
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Here, these are of the same order as the rest of the terms and
may not be neglected. In the case of W1, though, the inhomo-
geneous term, ÿ�o=ox��p=q�h; may be neglected in the present

¯ow situation. Measurements of �oh=ot� �oui=ot� indicate that
about 3% of W1 and 15% of W2 are contributions from the de-
struction terms in the present experiment. Figs. 1 and 2 also
show that the turbulent di�usion terms are signi®cant and
may not be neglected.

3.1. Model comparison for Wi

In Fig. 3 the inclination angles of the turbulent scalar ¯ux,
uih, and Wi are compared. In this ®gure we see that Wi is ap-
proximately parallel to the heat-¯ux vector and oriented in
the opposite direction. This result is similar to what has been
found by Rogers et al. (1989). A linear relaxation relation,
Wi � ÿc1T �1=s�uih, seems from this ®gure to be a good candi-
date for modelling Wi, where s often is taken as the dynamical
timescale, k=e.

The following, more general, model for Wi will be compared
with the present data:

Fig. 1. The dominating terms in the transport equation of uh normal-

ized by U 2
s Hs=l, where l is the velocity defect half-width and g � y=l. �,

Uouh=ox; +, ÿuvoH=oy; �, ÿvhoU=oy; �, ÿ�o=oy�uvh; á, W1.

Fig. 2. The dominating terms in the transport equation of vh normal-

ized by U 2
s Hs=l, where l is the velocity defect half-width and g � y=l.

�, Uovh=ox; +, ÿv2oH=oy; �, ÿ�o=oy�v2h; á, W2.
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Wi � ÿc1T
1

s
uih� c2T ulhUi;l � c3T ulhUl;i: �7�

This form is obtained by neglecting the destruction and the
pressure-di�usion terms in Eq. (4), and modelling the slow
part of the pressure scalar-gradient term by the ®rst term on
the right-hand side of Eq. (7), and the rapid part by the second
and third terms. The slow part may also include e�ects of de-
struction. In the present plane shear ¯ow the c2T term contrib-
utes only to the W1 component and the c3T term contributes
only to the W2 component.

The DNS of homogeneous shear ¯ow by Rogers et al. gives

a constant timescale ratio, h2e=keh, of about 1.2, where eh is the

dissipation rate of 1
2
h2. An estimation of e has been made from

the present data by balancing the transport equation of k and
neglecting the pressure-di�usion term. The timescale ratio,
based on this estimate, ranges from about 0.9 at the centerline
to 0.6 at the point of maximum production, which may be seen
in Fig. 4. The estimated timescale ratio is thus not constant in
the present wake ¯ow. The timescale ratio in some cases in-
cluding the heated cylinder is discussed by BeÂguier and Dekey-
ser (1978) and Launder (1978). In the comparisons below three
di�erent timescales will be used for s: the dynamical timescale,

k=e, the thermal timescale, h2=eh, where eh was determined

from the h2-equation, and a mixed timescale,

���������������
kh2=eeh

q
, which

blends both thermal and mechanical contributions.
In Figs. 5±10 W1 and W2 obtained from the measured data

are compared with those obtained from Eq. (7) using the val-
ues of c1T , c2T and c3T given in Table 1 and the three di�erent
choices of the timescale. c1T is the same, 3.2, for all models,
whereas c2T and c3T are varied. In model (a) c2T and c3T are
set to zero and Eq. (7) then gives a model of Wi aligned with
the heat-¯ux vector. The parameter choice of model (b) is
c1T � 3:2, c2T � 0:50 and c3T � 0. If the timescale is taken to

be the dynamical timescale, k=e, we have the Launder (1975)
model. By formal solution of the Poisson equation for the rap-

id pressure a linear model for �p=q��oh=oxi� may be derived,
see e.g. Shih (1996). Mathematical constraints then give
c2T � 4

5
and c3T � ÿ 1

5
. These parameter choices are used in

model (c).
In Figs. 5 and 6 the timescale s is taken to be k=e as in the

Launder model. All models give a very good agreement at the
centerline, which simply re¯ects that an appropriate value of
c1T has been chosen. Model (a) underpredicts both the W1Fig. 4. The time-scale ratio r � h2e=keh.

Fig. 5. Comparison between W1 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (7) using the

parameter values of c1T , c2T and c3T given in Table 1. +, experimental

data; � � �, (a); ±±±, (b); - - -, (c), with s � k=e.

Fig. 6. Comparison between W2 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (7) using the

parameter values of c1T , c2T and c3T given in Table 1. +, experimental

data; ±±±, (a) and (b); - - -, (c), with s � k=e.

Fig. 3. Comparison between the inclination angles of the turbulent

scalar ¯ux, uih, and Wi. �, tanÿ1�vh=uh�; +, tanÿ1�W2=W1�.

Fig. 7. Comparison between W1 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (7) using the

parameter values of c1T , c2T and c3T given in Table 1. +, experimental

data; � � �, (a); ±±±, (b); - - -, (c), with s � h2=eh.
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and W2 components. The Launder model, (b), gives the
same prediction as the previous one in the case of the W2

component, but improves the prediction of the W1 component.
Hence, inclusion of the rapid term gives an improvement.
Model (c) is unable to predict the two components simulta-
neously and gives a severe underprediction of the W2 term.
The Launder model could give a better compromise for the
components by increasing c1T to 4.0, though, resulting in a
overprediction of about 20% of the W1 component at the cen-
terline.

For the models in Figs. 5 and 6 the prediction of the peak is
displaced towards the freestream compared to the measured
data. This could be due to the neglection of the pressure-di�u-
sion term when determining e needed in the dynamical time-
scale, k=e. A comparison has been made with the model
predictions obtained when using the directly measured e of Ar-
onson and LoÈfdahl (1994) in the timescale, k=e. In this case the
displacement of the peaks is not obtained, whereas the maxi-
mum amplitudes will be the same as with the estimate of e from
the present data.

In Figs. 7 and 8 the timescale s is taken to be the thermal

timescale, h2=eh. Since the timescale ratio is 0.9 at the centerline
all models give good agreement here as in the previous case.
Model (c) gives a good prediction of the maximum amplitude
of the W2 component, whereas the W1 component is overpre-
dicted. Model (b) gives an overprediction of both components.
The larger values at g� 1, compared to the previous case, of all
model predictions are due to that the timescale ratio is 0.6 at
this position. By using c1T � 2:8 instead of 3.2 in model (b)
the behavior of both components is well captured.

In Figs. 9 and 10 the timescale s is taken to be the mixed

timescale

���������������
kh2=eeh

q
. As in the previous cases models (a) and

(c) are unable to predict the two components simultaneously
and all models give good agreement at the centerline. Model
(b) gives a very good prediction of the W1 component, whereas
W2 is slightly underpredicted. This could be due to the fact that
W2 contains also a pressure-di�usion term and the experimen-
tal data of this component seems to be more contaminated by
the destruction term. Using c1T � 3:5 instead of 3.2 in model
(b), a better compromise for the two components is obtained,
while by choosing c3T in model (b) to be 0.15 instead of 0, the
prediction of W2 can be improved while the prediction of W1 is
unchanged.

3.1.1. Comparison with an extended model
The inclusion of a fourth term, involving mean temperature

gradients, in the model for Wi has been used by previous work-
ers (see Shabany and Durbin, 1997):

Wi � ÿc1T
1

s
uih� c2T ulhUi;l � c3T ulhUl;i � c4T uiulH;l: �8�

Figs. 11 and 12 show the prediction of Eq. (8) using the pa-
rameter values given in Table 2. In model (b) the fourth term
is excluded, that is c4T � 0, and in model (c) the parameter
choice c2T � 1 and c3T � 0 is made. All the other parameters
are obtained by a least-square ®t to the two components of

Wi simultaneously, using the mixed timescale,

���������������
kh2=eeh

q
. Mod-

el (a) gives a very good agreement, whereas model (b) is almost
as good except for a slight overprediction near the centerline in
the case of the W1-component. The signs of the c2T and c3T pa-
rameters in model (b) are the same as in the theoretical deriva-
tion.

In a new explicit algebraic scalar-¯ux model by WikstroÈm
et al. (1997), the parameter choice c2T � 1 and c3T � 0 gives
a signi®cant simpli®cation of the model formulation. The
model prediction (c) shows that a fairly reasonable agreement

Fig. 10. Comparison between W2 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (7) using the

parameter values of c1T , c2T and c3T given in Table 1. +, experimental

data; ±±±, (a) and (b); - - -, (c); ± á ±, c1T � 3.2, c2T � 0.50 and

c3T � 0.15, with s �
���������������
kh2=eeh

q
.

Table 1

The di�erent combinations of the model constants used in Eq. (7)

(models (a) and (b) are equivalent for the W2-component)

Model c1T c2T c3T

(a) 3.2 0 0

(b) 3.2 0.50 0

(c) 3.2 4
5

ÿ 1
5

Fig. 8. Comparison between W2 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (7) using the

parameter values of c1T , c2T and c3T given in Table 1. ±±±, (a) and

(b); - - -, (c), with s � h2=eh.

Fig. 9. Comparison between W1 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (7) using the

parameter values of c1T , c2T and c3T given in Table 1. +, experimental

data; � � �, (a); ±±±, (b); - - -, (c), with s �
���������������
kh2=eeh

q
.
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may be obtained with this parameter choice in the present ¯ow
case.

3.2. Model comparison for uiujh

The following model for the triple correlations, uiujh, is
here compared to the experimental data:

uiujh � a1ks ulh
ÿ �

;ldij � a2ks uih
ÿ �

;j � ujh
ÿ �

;i

h i
� s a3 uiul ujh
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ÿ �
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ÿ �
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;j � ujul ulh
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ÿ �
;l
� ujh uiul� �;l

h i
� a8 ulh ujul

ÿ �
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h
� ulh uiul� �;j

i
� a9 ujh ulul� �;i � uih ulul� �;j

h io
: �9�

All the coe�cients may be seen as functions of the invari-
ants of the tensors in Eq. (9) but will here be considered as
constants. If the timescale, s, is taken as the dynamical time-
scale, the Shih (1996) model is obtained, where also higher or-
der terms may be included. In a plane wake ¯ow this model
gives a zero prediction of the triple correlations uwh and
vwh, which is expected and in agreement with the experimental

data. The other four nonzero components, u2h, v2h, w2h and
uvh, are shown in Figs. 13±16. The derivatives ÿ�o=oy�v2h
and ÿ�o=oy�uvh appear as the di�usion terms in the transport
equations of the heat ¯uxes, in the present ¯ow case. Figs. 13±
16 also show the prediction of Eq. (9) using the parameter val-
ues given in Table 3. The parameters of model (a) are obtained
by a least-square ®t to all four nonzero components simulta-

neously, using the mixed timescale,

���������������
kh2=eeh

q
. This model

predicts all components quite well, though, the behavior of
u2h and w2h are somewhat mispredicted for g < 1. Model (b)
is also a least-square ®t to the experimental data, but here only
the a2 and a6 terms are included. This model gives predictions
quite close to those of model (a) for all four components con-
sidering that only two model parameters are used instead of
nine. Using the a3-term instead of the a2-term, gives approxi-
mately the same predictions as that of model (b). The inclusion
of a tensor eddy di�usivity thus makes no major di�erence
in the present ¯ow case. The a3-term could of course be of

Fig. 13. Comparison between u2h (normalized by U 2
s Hs) obtained from

the experimental data and that obtained from Eq. (9) using the param-

eter values given in Table 3. �, experimental data; ±±±, (a); - - -, (b),

with s �
���������������
kh2=eeh

q
.

Fig. 14. Comparison between v2h (normalized by U 2
s Hs) obtained from

the experimental data and that obtained from Eq. (9) using the param-

eter values given in Table 3. �, experimental data; ±±±, (a); - - -, (b),

with s �
���������������
kh2=eeh

q
.

Fig. 11. Comparison between W1 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (8) using the

parameter values of c1T , c2T , c3T and c4T given in Table 2. +, experi-

mental data; ±±±, (a); - - -, (b); ± á ±, (c), with s �
���������������
kh2=eeh

q
.

Fig. 12. Comparison between W2 (normalized by U 2
s Hs=l) obtained

from the experimental data and that obtained from Eq. (8) using the

parameter values of c1T , c2T , c3T and c4T given in Table 2. +, experi-

mental data; ±±±, (a); - - -, (b); ± á ±, (c), with s �
���������������
kh2=eeh

q
.

Table 2

The parameter values in Eq. (8) obtained from a least-square ®t to the

experimental data using all four terms, (a), and only the three ®rst

terms, (b), with s �
���������������
kh2=eeh

q
Model c1T c2T c3T c4T

(a) 3.2 )0.05 )1.0 0.70

(b) 4.0 0.18 )0.16 0

(c) 1.2 1 0 0.54
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importance in a ¯ow with a higher degree of anisotropy. In the
present ¯ow case the a6-term seems to be of major importance.
This term as well as the a4-term are the only ones giving a
nonzero prediction of the w2h component in the present ¯ow
case. If the dynamical timescale is used instead of the mixed
timescale when deriving the two least-square ®ts to the exper-
imental data, approximately the same model predictions are
obtained but with di�erent values of the model parameters.
For example the parameters of model (b) would then be
a2 � ÿ0:064 and a6 � ÿ0:43.

4. Conclusions

From the present experimental data it seems clear that a
signi®cant improvement to the simplest model, Wi � ÿc1T

�1=s�uih, can be achieved by including a linear model for the
rapid part of the pressure scalar-gradient term. By using a

mixed timescale,

���������������
kh2=eeh

q
, the curves of the two components

of Wi are best captured. With this choice of the timescale the
following parameter choice gives the most satisfactory model
prediction for this ¯ow situation: c1T � 3:2, c2T � 0,
c3T � ÿ1:0 and c4T � 0:7. In a DNS of scalar transport in ho-
mogeneous turbulence by Kawamura and Ihira (1996) it was
found that c1T depends on the turbulent Reynolds number
and has a value of 3.8, using the dynamical timescale, for high
Reynolds numbers. In the present case the Launder model
gives a reasonably good compromise for both the components
of Wi by increasing c1T from 3.2 to 4.0. From Eq. (7) it is evi-
dent that the rapid terms are important when the velocity gra-
dients become of the same order of magnitude as the inverse of
the timescale, s, since the model constants all are of the same
order of magnitude.

When using the truncated Shih model for the triple correla-
tions, uiujh, given in Eq. (9), only two of the terms may give
approximately as good predictions as those of a model includ-

ing all nine terms. These two terms are the a2-term and a6-
term, where the latter ensures a nonzero prediction of w2h in
the present ¯ow case. A simple gradient di�usion model,
though, given by the a2-term, using a constant eddy-di�usivity,
or the a3-term, using a tensor eddy-di�usivity, are here unable
to capture the behavior of this component. Inclusion of a ten-
sor eddy-di�usivity, i.e., using the a3 instead of the a2-term to-
gether with the a6-term, gives no improvement and thus seems
to be of less importance in the present wake ¯ow.
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Fig. 15. Comparison between w2h (normalized by U 2
s Hs) obtained

from the experimental data and that obtained from Eq. (9) using the

parameter values given in Table 3. �, experimental data; ±±±, (a);

- - -, (b), with s �
���������������
kh2=eeh

q
.

Table 3

The parameter values in Eq. (9) obtained from a least-square ®t to the experimental data using all nine terms, (a), and only two terms, (b), with

s �
���������������
kh2=eeh

q
Model a1 a2 a3 a4 a5 a6 a7 a8 a9

(a) 0.017 )0.12 )0.064 0.028 0.093 )0.51 )0.0072 0.10 )0.062

(b) 0 )0.072 0 0 0 )0.54 0 0 0

Fig. 16. Comparison between uvh (normalized by U 2
s Hs) obtained from

the experimental data and that obtained from Eq. (9) using the param-

eter values given in Table 3. �, experimental data; ±±±, (a); - - -, (b),

with s �
���������������
kh2=eeh

q
.
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